skip to main content


Search for: All records

Creators/Authors contains: "Moghaddaszadeh, Mohammadreza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Stimuli-responsive elastic metamaterials augment unique subwavelength features and wave manipulation capabilities with a degree of tunability, which enables them to cut across different time scales and frequency regimes. Here, we present an experimental framework for robust local resonance bandgap control enabled by enhanced magneto-mechanical coupling properties of a magnetorheological elastomer, serving as the resonating stiffness of a metamaterial cell. During the curing process, ferromagnetic particles in the elastomeric matrix are aligned under the effect of an external magnetic field. As a result, particle chains with preferred orientation form along the field direction. The resulting anisotropic behavior significantly boosts the sensitivity of the metamaterial’s elastic modulus to the imposed field during operation, which is then exploited to control the dispersive dynamics and experimentally shift the location and width of the resonance-based bandgap along the frequency axis. Finally, numerical simulations are used to project the performance of the magnetically-tunable metamaterial at stronger magnetic fields and increased levels of material anisotropy, as a blueprint for broader implementations of in situ tunable active metamaterials.

     
    more » « less
  2. Abstract

    Acoustic phased arrays are capable of steering and focusing a beam of sound via selective coordination of the spatial distribution of phase angles between multiple sound emitters. Constrained by the principle of reciprocity, conventional phased arrays exhibit identical transmission and reception patterns which limit the scope of their operation. This work presents a controllable space–time acoustic phased array which breaks time-reversal symmetry, and enables phononic transition in both momentum and energy spaces. By leveraging a dynamic phase modulation, the proposed linear phased array is no longer bound by the acoustic reciprocity, and supports asymmetric transmission and reception patterns that can be tuned independently at multiple channels. A foundational framework is developed to characterize and interpret the emergent nonreciprocal phenomena and is later validated against benchmark numerical experiments. The new phased array selectively alters the directional and frequency content of the incident signal and imparts a frequency conversion between different wave fields, which is further analyzed as a function of the imposed modulation. The space–time acoustic phased array enables unprecedented control over sound waves in a variety of applications ranging from ultrasonic imaging to non-destructive testing and underwater SONAR telecommunication.

     
    more » « less